近日,图书馆VIP地球和空间科学学院王文忠特任教授与国际学者合作,采用第一性原理计算方法,对类地行星在增生演化过程中氮同位素的分馏行为进行了深入研究。该研究揭示了早期星胚熔融挥发和晚期富挥发份物质的增生两个关键阶段共同决定了硅酸盐地球中氮元素的丰度,为理解地球挥发份的起源提供了新的认识,相关成果以“Early planetesimal differentiation and late accretion shaped Earth’s nitrogen budget”为题发表在《Nature Communications》上。
氮是地球上生命的基本组成元素之一,广泛存在于众多有机分子之中。尽管氮对生命至关重要,但与地球初始增生物质相比,当前硅酸盐地球(包括大气、地壳和地幔)的氮含量相对较低,大约只有2ppm(百万分之二)。深入研究地球中氮的增生演化历史对认识地球生命相关元素的起源及宜居性演变具有重要意义。
目前,学术界主要有两种关于地球挥发份增生模型。第一种模型,即“后期增生模型(Late veneer)”,认为形成地球的初始增生物质几乎不含挥发份,包括氮,而硅酸盐地球目前所具有的挥发份丰度主要是在增生晚期通过加入少量富含挥发份物质(如碳质球粒陨石)形成的。第二种模型,即“早期演化模型”,则认为地球的初始增生物质原本就富含挥发份,地球所经历的一系列演化过程导致了目前硅酸盐地球相对于初始组分亏损挥发份。
氮有两种稳定同位素,即14N和15N。氮同位素可用于示踪地球挥发份在行星增生过程中的演化历史,为研究类地行星挥发份的起源和演化提供了一种关键研究手段。然而,要有效利用这一工具,首先必须了解行星早期演化阶段中氮同位素的分馏机制。王文忠特任教授采用第一性原理计算方法,研究了星云物质凝聚形成星胚过程中的氮同位素分馏,包括熔融挥发和核幔分异两个阶段。研究发现,在早期太阳系星云中氢气尚未完全散失的条件下,熔融挥发使得星胚富集14N,而核幔分异则导致15N在硅酸盐熔体中富集。
结合第一性原理计算结果和实际观测数据,研究团队发现早期星胚演化过程并不足以解释当前硅酸盐地球的氮同位素组成,必须在增生晚期加入一定量的富含挥发性成分的物质,如碳质球粒陨石,以解释观测到的氮同位素特征。因此,硅酸盐地球中的氮丰度是早期星胚演化和晚期增生阶段共同作用的结果。值得注意的是,尽管晚期增生对硅酸盐地球的氮丰度具有显著影响,但由于加入的富含挥发份物质的质量极低,其对硅酸盐地球中其他挥发份丰度的贡献十分有限。
论文第一和通讯作者为王文忠特任教授,合作者包括英国伦敦大学学院John Brodholt教授、美国卡耐基科学研究所Michael Walter研究员和田纳西大学诺克斯维尔分校黄士春教授。
近年来,王文忠特任教授领导的研究团队专注于类地行星挥发份的起源及早期演化,运用多种同位素作为示踪工具,结合第一性原理计算与观测数据,揭示了地球在吸积初始阶段便显著增生了大量挥发性元素,星胚的演化过程对地球的挥发份储库进行了重塑,相关论文发表在《Nature Geoscience》和《Science Advances》(Wang et al., 2021, NG, 2023, SA)。该研究对现有理论模型进行了重要的补充,重新评估了“后期增生”对地球氮丰度的影响。这一系列工作揭示了“早期演化”和“后期增生”两个阶段对地球挥发份的综合影响,为理解地球挥发性成分的演化历史提供了新的视角。
图 早期星胚熔融挥发和晚期增生对挥发份的影响
论文链接:https://www.nature.com/articles/s41467-024-48500-0
相关成果:https://www.science.org/doi/10.1126/sciadv.adh0670
https://www.nature.com/articles/s41561-021-00838-6
(地球和空间科学学院、科研部)